
Kousaie, S. et al. Bilingual language experience and the neural underpinnings of working memory. Neuropsychologia 163, 108081 (2021).
Kwon, Y. H., Yoo, K., Nguyen, H., Jeong, Y. & Chun, M. M. Predicting multilingual effects on executive function and individual connectomes in children: an ABCD study. Proc. Natl. Acad. Sci. USA 118, e2110811118 (2021).
Kousaie, S., Chai, X. J., Sander, K. M. & Klein, D. Simultaneous learning of two languages from birth positively impacts intrinsic functional connectivity and cognitive control. Brain Cogn. 117, 49–56 (2017).
Kousaie, S. et al. Language learning experience and mastering the challenges of perceiving speech in noise. Brain Lang. 196, 104645 (2019).
Vega-Mendoza, M., West, H., Sorace, A. & Bak, T. H. The impact of late, non-balanced bilingualism on cognitive performance. Cognition 137, 40–46 (2015).
Bialystok, E., Poarch, G., Luo, L. & Craik, F. I. Effects of bilingualism and aging on executive function and working memory. Psychol. Aging 29, 696 (2014).
Alladi, S. et al. Impact of bilingualism on cognitive outcome after stroke. Stroke 47, 258–261 (2016).
Stasenko, A. et al. Bilingualism and structural network organization in temporal lobe epilepsy: resilience in neurologic disease. Neurology 100, e1887–e1899 (2023).
Gunnerud, H. L., Ten Braak, D., Reikerås, E. K. L., Donolato, E. & Melby-Lervåg, M. Is bilingualism related to a cognitive advantage in children? A systematic review and meta-analysis. Psychol. Bull. 146, 1059 (2020).
Ware, A. T., Kirkovski, M. & Lum, J. A. Meta-analysis reveals a bilingual advantage that is dependent on task and age. Front. Psychol. 11, 1458 (2020).
Gullifer, J. W. et al. Bilingual experience and resting-state brain connectivity: impacts of L2 age of acquisition and social diversity of language use on control networks. Neuropsychologia 117, 123–134 (2018).
Berken, J. A., Chai, X., Chen, J. K., Gracco, V. L. & Klein, D. Effects of early and late bilingualism on resting-state functional connectivity. J. Neurosci. 36, 1165–1172 (2016).
Dash, T., Joanette, Y. & Ansaldo, A. I. Exploring attention in the bilingualism continuum: a resting-state functional connectivity study. Brain Lang. 224, 105048 (2022).
Luk, G., Bialystok, E., Craik, F. I. & Grady, C. L. Lifelong bilingualism maintains white matter integrity in older adults. J. Neurosci. 31, 16808–16813 (2011).
Klein, D., Mok, K., Chen, J. K. & Watkins, K. E. Age of language learning shapes brain structure: a cortical thickness study of bilingual and monolingual individuals. Brain Lang. 131, 20–24 (2014).
García-Pentón, L., Fernández, A. P., Iturria-Medina, Y., Gillon-Dowens, M. & Carreiras, M. Anatomical connectivity changes in the bilingual brain. Neuroimage 84, 495–504 (2014).
Fedeli, D., Del Maschio, N., Sulpizio, S., Rothman, J. & Abutalebi, J. The bilingual structural connectome: dual-language experiential factors modulate distinct cerebral networks. Brain Lang. 220, 104978 (2021).
Barbeau, E. B. et al. The role of the left inferior parietal lobule in second language learning: an intensive language training fMRI study. Neuropsychologia 98, 169–176 (2017).
Stoodley, C. J. & Schmahmann, J. D. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44, 489–501 (2009).
Stoodley, C. J. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 11, 352–365 (2012).
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B. & Diedrichsen, J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat. Neurosci. 22, 1371–1378 (2019).
Li, L. et al. Bilingualism alters brain functional connectivity between “control” regions and “language” regions: evidence from bimodal bilinguals. Neuropsychologia 71, 236–247 (2015).
Sulpizio, S., Del Maschio, N., Del Mauro, G., Fedeli, D. & Abutalebi, J. Bilingualism as a gradient measure modulates functional connectivity of language and control networks. Neuroimage 205, 116306 (2020).
Yuan, Q. et al. Patterns and networks of language control in bilingual language production. Brain Struct. Funct. 226, 963–977 (2021).
Pliatsikas, C., Johnstone, T. & Marinis, T. Grey matter volume in the cerebellum is related to the processing of grammatical rules in a second language: a structural voxel-based morphometry study. Cerebellum 13, 55–63 (2014).
Mariën, P. et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum 13, 386–410 (2014).
Fiez, J. A. The cerebellum and language: persistent themes and findings. Brain Lang. 161, 1–3 (2016).
Sander, K. et al. Frontoparietal anatomical connectivity predicts second language learning success. Cereb. Cortex 32, 2602–2610 (2022).
Tremblay, P. & Dick, A. S. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 162, 60–71 (2016).
Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).
Stam, C. V. & Van Straaten, E. C. W. The organization of physiological brain networks. Clin. Neurophysiol. 123, 1067–1087 (2012).
Meunier, D., Lambiotte, R. & Bullmore, E. T. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4, 200 (2010).
Betzel, R. F. et al. Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity. Netw. Sci. 1, 353–373 (2013).
Puxeddu, M. G. et al. The modular organization of brain cortical connectivity across the human lifespan. Neuroimage 218, 116974 (2020).
Gallen, C. L. & D’Esposito, M. Brain modularity: a biomarker of intervention-related plasticity. Trends Cogn. Sci. 23, 293–304 (2019).
Achard, S. & Bullmore, E. Efficiency and cost of economical brain functional networks. PLoS Comput. Biol. 3, e17 (2007).
Marrelec, G. et al. Regions, systems, and the brain: hierarchical measures of functional integration in fMRI. Med. Image Anal. 12, 484–496 (2008).
Bullmore, E. & Sporns, O. The economy of brain network organization. Nat. Rev. Neurosci. 13, 336–349 (2012).
Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A. & Rossi, S. Efficiency of weak brain connections support general cognitive functioning. Hum. Brain Mapp. 35, 4566–4582 (2014).
Danti, S. et al. Different levels of visual perceptual skills are associated with specific modifications in functional connectivity and global efficiency. Int. J. Psychophysiol. 123, 127–135 (2018).
Farah, R. & Horowitz-Kraus, T. Increased functional connectivity within and between cognitive-control networks from early infancy to nine years during story listening. Brain Connect. 9, 285–295 (2019).
Pamplona, G. S., Santos Neto, G. S., Rosset, S. R., Rogers, B. P. & Salmon, C. E. Analyzing the association between functional connectivity of the brain and intellectual performance. Front. Hum. Neurosci. 9, 61 (2015).
Wang, R. et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities. Proc. Natl. Acad. Sci. USA 118, e2022288118 (2021).
Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’networks. Nature 393, 440–442 (1998).
Butz, M., Steenbuck, I. D. & van Ooyen, A. Homeostatic structural plasticity increases the efficiency of small-world networks. Front. Synaptic Neurosci. 6, 7 (2014).
Fedorenko, E. & Thompson-Schill, S. L. Reworking the language network. Trends Cogn. Sci. 18, 120–126 (2014).
Hagoort, P. Nodes and networks in the neural architecture for language: Broca’s region and beyond. Curr. Opin. Neurobiol. 28, 136–141 (2014).
Chai, L. R., Mattar, M. G., Blank, I. A., Fedorenko, E. & Bassett, D. S. Functional network dynamics of the language system. Cereb. Cortex 26, 4148–4159 (2016).
Sander, K. et al. Interhemispheric functional brain connectivity predicts new language learning success in adults. Cereb. Cortex 33, 1217–1229 (2023).
Pliatsikas, C. & Luk, G. Executive control in bilinguals: a concise review on fMRI studies. Biling. Lang. Cogn. 19, 699–705 (2016).
Fan, X. et al. The differences in the whole-brain functional network between Cantonese-Mandarin bilinguals and Mandarin monolinguals. Brain Sci. 11, 310 (2021).
Strick, P. L., Dum, R. P. & Fiez, J. A. Cerebellum and nonmotor function. Annu. Rev. Neurosci. 32, 413–434 (2009).
Xue, A. et al. The detailed organization of the human cerebellum estimated by intrinsic functional connectivity within the individual. J. Neurophysiol. 125, 358–384 (2021).
Schmahmann, J. D. The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019).
Keren‐Happuch, E., Chen, S. H. A., Ho, M. H. R. & Desmond, J. E. A meta‐analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum. Brain Mapp. 35, 593 (2014).
Van Overwalle, F., Baetens, K., Mariën, P. & Vandekerckhove, M. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage 86, 554–572 (2014).
Guell, X., Gabrieli, J. D. & Schmahmann, J. D. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 172, 437–449 (2018).
Klein, D., Milner, B., Zatorre, R. J., Meyer, E. & Evans, A. C. The neural substrates underlying word generation: a bilingual functional-imaging study. Proc. Natl. Acad. Sci. USA 92, 2899–2903 (1995).
Felton, A. et al. Bilingualism influences structural indices of interhemispheric organization. J. Neurolinguist. 42, 1–11 (2017).
DeLuca, V., Rothman, J., Bialystok, E. & Pliatsikas, C. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function. Proc. Natl. Acad. Sci. USA 116, 7565–7574 (2019).
Krienen, F. M. & Buckner, R. L. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 19, 2485–2497 (2009).
Naeem, K., Filippi, R., Periche-Tomas, E., Papageorgiou, A. & Bright, P. The importance of socioeconomic status as a modulator of the bilingual advantage in cognitive ability. Front. Psychol. 9, 1818 (2018).
Berken, J. A., Gracco, V. L., Chen, J. K. & Klein, D. The timing of language learning shapes brain structure associated with articulation. Brain Struct. Funct. 221, 3591–3600 (2016).
Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).
Nieto-Castanon, A. Handbook of Functional Connectivity Magnetic Resonance Imaging Methods in CONN (Hilbert Press, 2020).
Ashburner, J. et al. SPM12 Manual Vol. 2464 (Wellcome Trust Centre for Neuroimaging, London, UK, 2014).
Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).
Chai, X. J., Castañón, A. N., Öngür, D. & Whitfield-Gabrieli, S. Anticorrelations in resting state networks without global signal regression. Neuroimage 59, 1420–1428 (2012).
Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).
Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).
Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very large networks. Phys. Rev. E 70, 066111 (2004).
Dijkstra, E. W. A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJ. Complex Syst. 1695, 1–9, http://igraph.org/ (2006).
Welch, B. L. The generalization of ‘STUDENT’S’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70, http://www.jstor.org/stable/4615733 (1979).
Zalesky, A., Fornito, A. & Bullmore, E. T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).
Gracia-Tabuenca, Z. & Alcauter, S. NBR: network-based R-statistics for (unbalanced) longitudinal samples. Preprint at bioRxiv https://doi.org/10.1101/2020.11.07.373019 (2020).
Penhune, V. B. Sensitive periods in human development: evidence from musical training. Cortex 47, 1126–1137 (2011).
Vaquero, L., Rousseau, P. N., Vozian, D., Klein, D. & Penhune, V. What you learn & when you learn it: impact of early bilingual & music experience on the structural characteristics of auditory-motor pathways. Neuroimage 213, 116689 (2020).
Schroeder, S. R., Marian, V., Shook, A. & Bartolotti, J. Bilingualism and musicianship enhance cognitive control. Neural Plast. 2016(1), 4058620 (2016).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Pedersen, T. L. ggraph: an implementation of grammar of graphics for graphs and networks. R. Package Version 2, 1 (2020).
Xia, M., Wang, J. & He, Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8, e68910 (2013).